

ACO REMOSA

para águas residuais ROX PLUS 500

Índice

1. In	ntrodução	
1.1	Considerações	4
1.2	Princípio de funcionamento	4
2. D	escrição do tratamento	
2.1	Desbaste	4
2.2	Bioreactor biológico de membrana	5
2.3	Sistema de cloração	5
2.4	Depósito de armazenamento	5
3. Es	squema de tratamento	<i>6</i>
4. D	ados de projeto	8
5. Ec	quipamento incluído	9
6. M	lapa/s	11
7. C	olocação em funcionamento da instalação	12
7.1	Enchimento do equipamento	12
7.2	Programação do quadro elétrico para a colocação em serviço	13
8. R	egime de funcionamento do equipamento	14
8.1	Grelha de desbaste	14
8.2	Ventilador de aeração do reator	14
8.3	Ventilador de aeração por membrana	14
8.4	Bomba de permeado ou de filtração	15
8.5	Caudal	15
8.6	Bomba de retorno de lamas	15
8.7	Bomba doseadora para NaCIO	15
9. Pı	rogramação do quadro elétrico	1 <i>6</i>
9.1	Lógica de funcionamento	16
9.2	Ecrã S7-1200	16
9.3	LEDs no quadro elétrico	23
9.4	Sistema de cloração	24
10. Re	ecomendações de instalação para enterrar o equipamento	25
10.1	Avisos gerais	25
10.2	Manipulação	25

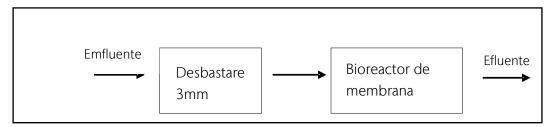
para águas residuais ROX PLUS 500

10.3	Escavação de poços	27
10.4	Material de cama e de aterro	28
10	0.4.1 Para terrenos estabilizados, não propensos a inundações e/ou sem lençol freá	
10	0.4.2 Para terrenos não estabilizados, propensos a inundações e/ou com lençóis	∠0
	eáticos	29
10.5	Ancoragem	30
10.6	Câmaras de acesso	30
11. Rec	comendações para a instalação de acessórios	32
11.1	Grelha de desbaste	
11.2	Ventilador do reator e ventilador da membrana	32
11.3	Módulo de membrana	34
11.4	Transmissor de pressão	35
11.5	Medidor de caudal	35
11.6	Bomba de permeado (água tratada)	36
11.7	Bomba de retorno de lamas	37
11.8	Bóias de nível ROX PLUS	37
11.9	Bóias de nível DAN	37
11.10	Bomba de cloração	37
12. Ma	nutenção	39
12.1	Visão geral das operações	39
12.2	Estação de recuperação de água	39
12.3	Teste V ₃₀	39
12.4	Bomba de permeado	40
12.5	Sopradores	41
12.6	Limpeza de membranas	41
13. Ace	essórios	42

para águas residuais ROX PLUS 500

1. Introdução

1.1 Considerações


O tratamento é concebido com base em dados estatísticos geralmente aceites. Com base nestes dados, o funcionamento correto é garantido desde que os cálculos básicos sejam respeitados e que o equipamento seja instalado e mantido de acordo com as instruções fornecidas por ACO Remosa.

Em circunstância alguma deve ser introduzida no processo água da chuva ou água que não possa ser assimilada a água doméstica.

1.2 Princípio de funcionamento

A estação de recuperação de água é um conjunto de sistemas de alto rendimento para o tratamento de águas residuais equiparáveis a águas residuais domésticas, obtendo água de qualidade para reutilização através da tecnologia de membranas. O sistema cumpre os requisitos do Real Decreto 1620/2007, que estabelece o regime jurídico da reutilização da água tratada.

2. Descrição do tratamento

2.1 Desbaste

O desbaste da água é importante para garantir que nenhum elemento sólido que possa danificar as membranas entre no equipamento. Para este efeito, é utilizada uma grelha de desbaste automática com uma capacidade de 3mm.

para águas residuais ROX PLUS 500

2.2 Bioreactor biológico de membrana

No reator biológico, ocorrem as diferentes reacções necessárias para a decomposição bioquímica da matéria orgânica. Para que estas reacções ocorram, é necessário um fornecimento de oxigénio para proporcionar condições aeróbias no reator e para manter os microrganismos em suspensão.

Ao contrário da oxidaçãolongoNo reator convencional, o reator trabalha com concentrações mais elevadas de sólidos, pelo que é necessária uma maior oxigenação e, com uma maior idade das lamas, obtêm-se eficiências de depuração mais elevadas.

Módulos de membrana

As membranas instaladas no reator efectuam aseparação de sólidos- líquido por filtração.

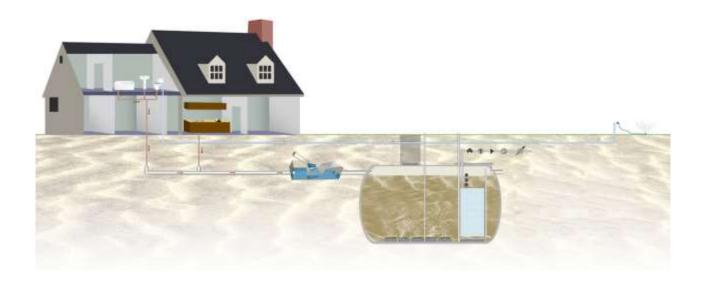
Através de um sistema de aspiração (bomba), é exercida uma pressão de vácuo sobre as membranas, criando um fluxo exterior-interior, de modo a que a água penetre através das membranas e os sólidos e bactérias fiquem retidos na parede exterior.

Os difusores instalados sob as membranas permitem a criação de um fluxo ascendente de ar de bolha para limpar a superfície da parede exterior das membranas, bem como fornecer oxigénio ao bioreactor.

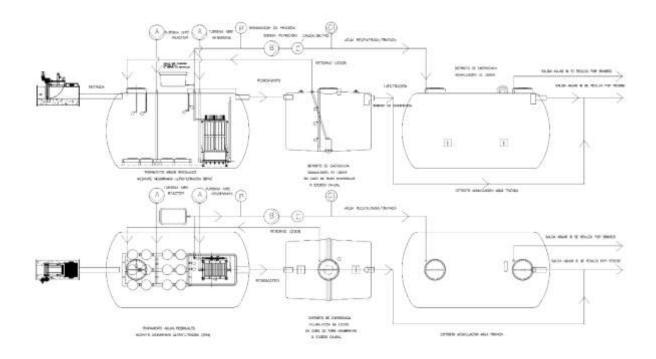
2.3 Sistema de cloração

O permeado (água tratada) é ligeiramente clorado através da dosagem de hipoclorito de sódio para preservar as propriedades sanitárias do efluente ao longo do tempo, garantindo o cumprimento do limite estabelecido no Real Decreto 1620/2007 para a reutilização de água para uso residencial.

2.4 Depósito de armazenamento


O tanque de segurança é utilizado para acumular os picos de caudal ou o excesso de lamas devido à paragem da extração de permeado. Estas lamas são depois introduzidas no sistema.

As bóias de nível médio e máximo alertam para o estado de obstrução do sistema por lamas.


para águas residuais ROX PLUS 500

3. Esquema de tratamento

para águas residuais ROX PLUS 500

para águas residuais ROX PLUS 500

4. Dados de projeto

Base de cálculo

População (hab _{eq})	500
Consumo (I/hab-dia)	150
COD (mg/l)	90
CBO ₅ (g/hab _{eq} -l)	60
MÊS (g/hab _{eq} -l)	90
NTK (g/hab _{eq} -l)	9

Caudais de projeto

Caudal diário (m³/dia)	75,00
Caudal médio (m³/h)	3,13
Caudal de pico (m³/h)	9,38

Estação de regeneração ROX PLUS

Diâmetro da estação de tratamento de águas residuais (mm)	3500
Comprimento da estação de tratamento de águas residuais (mm)	11930
Volume total (m³)	106,00
HRT (h)	31,18

Parâmetros de funcionamento

Carga de massa (kg CBO ₅ /dia-kg SSLM)	0,03
Carga volumétrica (kg CBO ₅ /m³-dia)	0,31
Consumo de oxigénio (kg O ₂ /h)	123,58
Caudal de permeado de projeto (I/m²-h)	25

Parâmetros de funcionamento

Potência eléctrica total instalada com	11,02
reservatório de segurança (kW)	

para águas residuais ROX PLUS 500

5. Equipamento incluído

 Crivo de desbaste auto-limpante com 300 mm de largura por 400 mm de altura (3 mm de folga) com cesto de recolha de sólidos.

Tensão (V)	Frequência (Hz)	Potência (kW)	Intensidade(A)	Proteção
380	50	0,12	0,77	IP-55

O objetivo da grelha de desbaste automático é garantir a retenção de partículas maiores do que 3 mm que poderiam danificar as membranas.

- Estação de regeneração ROX PLUS para 500 habitantes equivalentes (Diâmetro: 3500 mm e comprimento: 11930 mm).
- Conjunto de membranas de ultrafiltração 200 m².
- Turbina de arejamento trifásica com acessórios, para o arejamento de reactores.

Tensão (V)	Frequência (Hz)	Potência (kW)	Corrente (A)	Proteção
400	60	4,00	5,80	IP-55

O ventilador tem duas funções:

- 1. O fornecimento de ar ao reator biológico para manter as condições aeróbias de modo a que os microrganismos possam degradar a matéria orgânica.
- 2. Crie agitação suficiente para manter os microrganismos em suspensão.
- Difusores de membrana, tamanho de bolha 1 a 3 mm, caudal de ar operacional 6-7 m/h e diâmetro do disco de 330 mm, equipado com válvula anti-retorno.
- Módulo de membrana Turbina de aeração

Tensão (V)	Frequência (Hz)	Potência (kW)	Corrente (A)	Proteção
400	50	4,00	5,80	IP-55

O ventilador tem duas funções:

- 1. Crie um fluxo de bolhas ascendentes para transportar a matéria depositada na superfície das membranas, produzindo um efeito de limpeza.
- 2. Forneça ar ao reator.
- Bomba de extração de permeado

para águas residuais ROX PLUS 500

Tensão (V)	Frequência (Hz)	Potência (kW)	Corrente (A)	Proteção
380	50	1,50	3,23	IP-55

O objetivo da bomba de permeado é gerar o vácuo necessário no coletor de permeado para que a filtragem de fluxo cruzado das águas residuais tenha lugar.

Bomba doseadora de hipoclorito de sódio com caudal constante.

Tensão (V)	Frequência (Hz)	Potência (W)
230	50	16

- Medidor de caudal paracontrolo do caudal de permeado.
- Transmissor de pressão para controlo da pressão transmembranar. Gama de pressão: 0 bar
 -1 bar.
- Bóias de nível ROX PLUS para níveis máximos e mínimos (para o mínimo).
- Quadro elétrico trifásico de proteção e controlo de 380 V.
- Tanque de segurança DAN e manutenção (caso não exista rede de esgotos) de3000 mm de diâmetro e 11600 mm de comprimento (Se tiver escolhido/adquirido um reservatório de segurança 24 horas para o fluxo de entrada).
- Bóias de nível do equipamento DAN para níveis máximo, médio e baixo.
- Bomba submersível para o retorno das lamas do tanque de segurança para a estação de tratamento.

Tensão (V)	Frequência (Hz)	Potência (kW)	Corrente (A)	Proteção
400	50	1,40	2,60	IP-68

A bomba de recirculação do reservatório de segurança tem por objetivo devolver ao biorreactor as águas residuais/lamas acumuladas no reservatório devido a picos de caudal de entrada que não puderam ser absorvidos ou devido a uma paragem na extração do permeado, ou durante as operações de limpeza e manutenção.

para águas residuais ROX PLUS 500

6. Mapa/s

para águas residuais ROX PLUS 500

7. Colocação em funcionamento da instalação

O arranque começa com o enchimento (inoculação de lamas ACTIVA) e termina quando a unidade está completamente cheia.

7.1 Enchimento do equipamento

O arranque correto do equipamento é essencial para o seu posterior funcionamento ótimo. Por este motivo, é necessário semear ou inocular a unidade ROXPLUS com lamas (junto aos módulos de permeado).

A filtração direta das águas residuais pode levar ao entupimento prematuro das membranas. Por isso, durante o arranque, parte do tanque deve ser preenchido com lamas activadas para tratar biologicamente as águas residuais.

Recomenda-se a utilização de lamas activadas frescas, normalmente provenientes de instalações de lamas activadas. A concentração da lama activada introduzida na instalação deve situar-se entre 3000 mg/l e 4000 mg/l. Para esta instalação, um volume de lamas de inoculação de**32** m.

Atenção! Deve certificar-se de que as lamas recebidas são limpas de matérias finas antes de serem introduzidas no reservatório.

Atenção! A alimentação de lamas deve ser efectuada imediatamente antes do início do funcionamento da instalação (antes da entrada de novas águas residuais).

Quando a estação está cheia de lamas, as águas residuais podem entrar na estação para encher o reator biológico.

Importante: Quando a unidade está cheia de água (até ao nível mínimo da boia), o painel de controlo pode ser programado.

Não ligue as turbinas até que o equipamento esteja cheio (até que o nível mínimo das bóias seja atingido).

Antes de colocar a bomba de permeado em funcionamento, é necessário escorvar a bomba, ou seja, encher o coletor de permeado e as membranas com água limpa a baixa pressão através da válvula.

NotaAlguns dos parâmetros programados no painel de controlo para o arranque serão alterados posteriormente para o funcionamento normal.

para águas residuais ROX PLUS 500

7.2 Programação do quadro elétrico para a colocação em serviço

a) Grelha de desbaste

O modo de funcionamento da relha de desbaste deve ser automático.

Duração: XX:XX horas:minutos

Tempo de inatividade: YY: YY horas: minutos

Modelo	X (h:min)	Y (h:min)
ROX PLUS500	00:01	00:15 (02:00) (*)

- (*) a adaptar em função dos sólidos que entram na instalação
- b) Ventilador de aeração do reator

Para o arranque, a turbina deve ser colocada na posição manual.marcha.

c) Ventilador de aeração por membrana

O modo de funcionamento deve ser automático.

Durante os ciclos de permeação, o ventilador estará sempre a funcionar.

Em caso de paragem nos ciclos de permeado, a velocidade do ventilador deve ser a especificada. O objetivo é manter as membranas limpas.

Duração: XX:XX horas:minutos Hora de paragem: YY:YY horas:minutos

Modelo	X (h:min)	Y (h:min)
ROX PLUS 500 (apenas para arranque depois de sair do 00:05 min março y 00:30 desemprego mínimo)	00:05	00:15

d) Bomba de permeado ou de filtração

A bomba de permeado deve ser automática.

Duração: XX:XX horas:minutos Hora de paragem: YY:YY horas:minutos

para águas residuais ROX PLUS 500

Modelo	X (h:min)	Y (h:min)
ROX PLUS 500 (apenas para a entrada em funcionamento), depois saia 00:09 min março:00:01 desemprego mínimo)	00:06	00:04

e) Caudal

Modelo	X (l/h)
ROX PLUS 500 (apenas paradepois aumente para 5000 l/h)	3500

f) Presión

Introduza a pressão transmembranar (-200 mbar), tendo em conta (adicionando) a pressão indicada pelo manómetro durante o arranque (pressão inicial).

8. Regime de funcionamento do equipamento

A programação que se segue refere-se ao funcionamento do equipamento em condições de projeto, uma vez concluída a colocação em funcionamento. As instruções para a programação da central encontram-se na SECÇÃO 9.

8.1 Grelha de desbaste

O modo de funcionamento da relha de desbaste deve ser automático.

Duração: XX:XX horas:minutos Hora de paragem: YY:YY horas:minutos

Modelo	X (h:min)	Y (h:min)
ROX PLUS 500	00:1	00:15 (o 02:00)

8.2 Ventilador de aeração do reator

O modo de funcionamento do ventilador deve ser manual - funcionamento.

8.3 Ventilador de aeração por membrana

O modo de funcionamento deve ser automático.

para águas residuais ROX PLUS 500

Durante os ciclos de permeação, o ventilador estará sempre a funcionar.

Em caso de paragem nos ciclos de permeado, a velocidade do ventilador deve ser a especificada. O objetivo é manter as membranas limpas.

Duração: XX:XX horas:minutos Hora de paragem: YY:YY horas:minutos

Todos os modelos	x	Y (h:min)
Ciclo não permeado	00:05 (h:min)	00:30
Ciclo de recuperação da membrana	45 (min)	
Válvula de arejamento por membrana	00:05 (h:min)	23:55

8.4 Bomba de permeado ou de filtração

O modo de funcionamento da bomba deve ser automático.

Duração: XX:XX horas:minutos Hora de paragem: YY:YY horas:minutos

Modelo	X (h:min)	Y (h:min)
ROX PLUS 500	00:09	00:01

8.5 Caudal

Caudal médio X I/h

Modelo	X (l/h)
ROX PLUS 500	5000

8.6 Bomba de retorno de lamas

O modo de funcionamento deve ser automático (caudal da bomba 35 m³/h)

Modelo	X (h:min)	Y (h:min)
ROX PLUS 500	00:05	00:55

8.7 Bomba doseadora para NaCIO

Posicione o doseador em 500% divisor 10.

para águas residuais ROX PLUS 500

9. Programação do quadro elétrico

9.1 Lógica de funcionamento

Trata-se de um sistema MBR em que as membranas são instaladas no interior da estação de tratamento. A água tratada é obtida a partir da aspiração da água a tratar que fica fora das membranas através de uma bomba externa (bomba de permeado). Isto requer um certo nível de água (para proteger as membranas) e a turbina deve funcionar durante esta bombagem para limpar as membranas. Para garantir a limpeza das membranas, esta bombagem é efectuada com ciclos de permeado (x min ON x min OFF), o que também permite a lavagem das membranas durante os períodos de relaxamento.

No que respeita à turbina, esta funciona a 100% durante o ciclo de permeado, quando as bóias de nível o indicam; ou de forma programada quando não há nível suficiente. Relativamente ao sistema de arejamento, é necessária uma purga de ar (por meio de E/V).

Finalmente, quando a água é bombeada para fora, é utilizada uma bomba doseadora de cloro para clorar a água.

9.2 Ecrã \$7-1200

O PLC tem umecrã no qual pode definir os tempos de funcionamento:

Ecrã principal. Os LEDs indicam quais os elementos que estão a funcionar e pode ver em tempo real a pressão e o caudal.

Ciclo de recuperação e alarme de membranas bloqueadas: Se a pressão for demasiado baixa, o sistema tentará recuperar as membranas bloqueadas, limpando-as ao mesmo tempo com ar.através do ventilador (seguindo a programação). Durante este arejamento, o indicador

para águas residuais ROX PLUS 500

luminoso "Ciclo de recuperação" acende-se. Esta operação pode ser repetida um determinado número de vezes (de acordo com a programação). Este número de limpezas pode ser reiniciado se tiverem passado "x" horas entre 2 lavagens (de acordo com a programação). Se o arejamento não for suficiente, o sistema pára definitivamente e o LED vermelho de alarme "Alarme de membranas bloqueadas" indica-o.

Se premir o ícone (à direita), passará para o ecrã seguinte.

Neste ecrã, pode aceder à programação (ou horários) do sistema através do botão: MENU.

Primeiro, deve desbloquear o ecrã. Para o fazer, prima o ícone vermelho "KEY" no ecrã principal (1) para desbloquear o MENU.

De seguida, introduza o nome de utilizador e a palavra-passe.

- Utilizador nome: seleccione no menu pendente:ACO Remosa.
- Palavra-passe1234 Para introduzir números confortavelmente, arraste o teclado para baixo, arrastando-o com dois dedos.

Se o número da palavra-passe estiver errado, é apresentada uma mensagem de erro e o valor tem de ser introduzido.

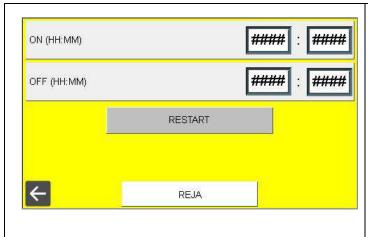
Depois de introduzir a palavra-passe: prima o botão LOGIN (atenção: NÃO prima o botãoTerminar sessão).

Verá então a mensagem abaixo da palavra-passe para:Sucessos.

Premir o botão Início leva- para o ecrã principal seguinte (1):

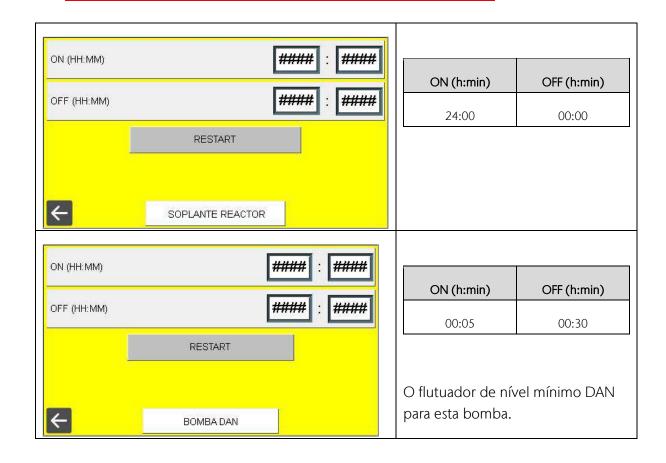
para águas residuais ROX PLUS 500

Para bloquear o menu com KEY enter:utilizador nome:ACO RemosaPalavra-passe:1234 e, quando a palavra-passe for aceite, prima LOGOUT

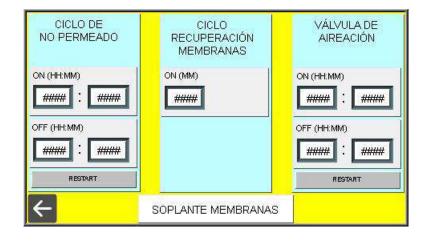

Quando o ecrã estiver desbloqueado e o botão MENU for premido, é apresentado o seguinte ecrã:

Dentro do MENU, os seguintes itens serão operados independentemente com o temporizador LIGADO e DESLIGADO e podem ser reiniciados, se necessário, com o botão REINICIAR:

- Grelha
- Bomba DAN (do reservatório de segurança)
- Ventilador do reator


O modo de funcionamento do ecrã deve ser definido como automático.

	00:15
00:02	ou
	2:00



para águas residuais ROX PLUS 500

Ventilador de membrana

A partir do ecrãmNo menu, prima o botão "MEMBRANE BLOW" para aceder ao ecrã seguinte:

para águas residuais ROX PLUS 500

- O ventilador funciona continuamente quando o nível de água atinge um nível máximo e pára quando atinge o nível mínimo. Por outras palavras, funciona continuamente no CICLO DE PERMEAÇÃO.
- CICLO NÃO PERMEADO: Quando o nível do reator é inferior ao da boia de nível mínimo, o ventilador de membrana deve funcionar na posição "CICLO NÃO PERMEADO":

ON (h:min)	OFF (h:min)
00:05	00:30

CICLO DE RECUPERAÇÃO DA MEMBRANA: Quando o valor limite da pressão transmembrana é ultrapassado. O ciclo de permeado pára (a bomba de permeado pára) e o ventilador da membrana funciona continuamente durante X minutos (45 min) e, após este tempo, o ciclo de permeado tenta recomeçar desde que o valor da pressão esteja dentro do intervalo.

45	Ligado (min)
	45

Válvula de arejamento

Uma vez por dia, durante 5 minutos, a válvula solenoide de arejamento abre-se e o sistema de arejamento da membrana é limpo. Durante este processo, o ventilador da membrana estará a funcionar e a bomba de permeado estará parada.

Para instalar o sistema, deve ser aplicada tensão ao abrir e fechar a electroválvula.

ON (h:min)	OFF (h:min)
00:05	23:55

para águas residuais ROX PLUS 500

Bomba de permeado

No menu doecrăPrima o botão "BOMBA DE PERMEADO" para aceder ao ecră seguinte:

CICLO DE PERMEADO: Quando o nível do reator atinge o flutuador máximo, a bomba de

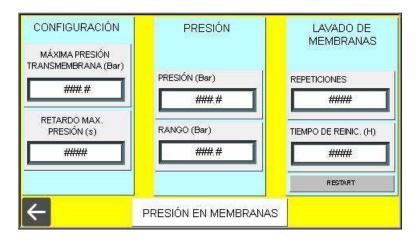
permeado começa a funcionar até que o nível mínimo seja atingido, seguindo o seguinte calendário (indicado pelo flutuador mínimo).

ON (h:min)	OFF (h:min)
00:09	00:01

- MEDIDOR DE CAUDAL:
 - Caudal: Indica o caudal atual.
 - Gama do medidor de caudal: varia entre 240 l/h a 12000 l/h (4 mA-20 mA) (caudal máximo =200 m2 membranas25 l/m2).

Entrada do caudal de funcionamento - caudal do ponto de regulação:

- FLUXO DE TRABALHO: Este é o caudal de referência introduzido no próprio conversor de frequência. Inicialmente em 5000 l/h.
- No inversor: prima OPÇÕES: REFERÊNCIA: Prima as setas para cima e para baixo para modificar o valor, bem como a direita-esquerda para mover o cursor para o valor a ser alterado. Por fim, prima Guardar.
- No caso de se perder a configuração inicial, pode fazer o seguinteaapoio no inversor para repor a programação inicial (efectuada na fábrica).


Membranas

No menu doecrăPrima o botão "MEMBRANAS" para aceder ao ecră seguinte:

para águas residuais ROX PLUS 500

Configuração

- Pressão transmembranar máxima
- É a pressão transmembrana máxima (bar). É a pressão inicial (observada no arranque com as membranas de ultrafiltração limpas) (pressão negativa) menos a pressão transmembranar 0,20 bar) = pressão inicial pressão transmembranar.
- Atraso máximo de pressão. Este é o tempo, expresso em segundos, que o sistema espera antes de ativar o alarme de baixa pressão (abaixo do limite): inicialmente: 30 seg.

Pressão

- PressãoLeitura atual da pressão
- Alcancedo transmissor: -1 bar (0 mA é 0 bar e 20 mA é -1 bar do transmissor do sistema).

Lavado Membrana

- RepetiçõesÉ o número de repetições da lavagem da membrana com ar (através do ventilador) antes de bloquear/desligar o sistema (é obrigatória uma limpeza da membrana com hipoclorito com 0,5% de cloro ativo).
- Hora de arranquepara reiniciar as repetições. Se tiverem decorrido algumas horas entre duas limpezas de ar, o sistema reinicia-se automaticamente. Neste caso, inicialmente, será: 24 h.

Bomba NaClO Hipoclorito de sódio

Esta bomba funcionará quando a bomba de permeado estiver a funcionar.

para águas residuais ROX PLUS 500

Eventos

A partir do ecrã MENU, prima o botão "EVENTOS" para aceder ao registo de cada evento.
 Para exemplo Em soplante, off soplante, etc...

Alarmes

O alarme mais importante aparece no ecrã principal: ALARME DE MEMBRANAS BLOQUEADAS: indica que, após um determinado número de lavagens das membranas (com ar), o sistema não conseguiu regenerar as membranas. Por conseguinte, deve efetuar a manutenção lavando as membranas com hipoclorito de sódio diluído a 0,5%.

A partir do ecrã principal, prima o botão "ALARMES" para aceder ao registo de alarmes. Este ecrã é apresentado:

- Intermitência do disjuntor de cada elemento eletromecânico
- Alarme de pressão transmembranar baixa.
- Caso o nível das lamas no depósito de acumulação seja máximo e/ou médio (indicado pelas bóias de nível máximo e médio).

O PLC tem umecrã que permite a fixação de todos os elementos electromecânicos.

Alarme na tampa de 2 bóias de segurança de nível mínimo do ROXPLUS e de 2 bóias de segurança de nível intermédio e máximo do equipamento DAN.

9.3 LEDs no quadro elétrico

Na porta do quadro elétrico encontra-se uma série de LEDs.

Em geral, o LED verde indica Run /Em do elemento eletromecânico e vermelho quando há uma falha/desarme térmico.

Bóias

Os LEDs nas bóias ROXPLUS indicam o seguinte:

- LED verde: o ciclo de permeado está ativado. A bomba de permeado extrai a água tratada.temporariamente e o ventilador de membrana funciona durante todo este período.
- LED amarelo: Indica que o sistema ainda está no ciclo de permeação. Quando se apaga, indica que o sistema está no ciclo de não permeação. No ciclo sem permeado, a bomba não está a funcionar e o ventilador da membrana está a funcionar.temporariamente.

para águas residuais ROX PLUS 500

LED vermelho de segurança 1: alarme de nível mínimo. Este meninoa A boia de segurança garante que a bomba de permeado não funciona por falta de nível. Esta boiaé instalado no caso de oA desativação falha. O sistema neste estado deve continuar no ciclo de não permeado, no qual a bomba de permeado está parada e o ventilador da membrana está a funcionar.temporariamente.Esta boia deve ser instalada ligeiramente abaixo da boia de paragem.

Os LEDs das bóias HLD (tanque de segurança) indicam o seguinte.

- LED amarelo: se estiver aceso, indica que existe um nível mínimo de águas residuais no
 HLD A bomba do HLD deve alimentar as águas residuais no ROXPLUS.temporariamente.
- LED vermelho: indica que as lamas atingiram um nível intermédio no equipamento DAN. Isto ocorre quando o sistema não consegue absorver a totalidade do afluxo à estação de tratamento ou quando o sistema de permeado é interrompido, por exemplo, porque as membranas estão sujas e, consequentemente, as águas residuais se acumulam no depósito de segurança.
- LED vermelho de nível máximo: indica que a água está prestes a ser descarregada pelo transbordo. Se necessário, deve efetuar a manutenção e o esvaziamento do equipamento. A razão para atingir este nível é a mesma que para o nível intermédio.

9.4 Sistema de cloração

Bomba doseadora

Deve funcionar em modo constante na posição DIVISOR. 10.

Para colocar na posição de divisor:

- Coloque a bomba na posição OFF
- Prima ON/OFF até piscar 3 vezes
- O led por baixo acende-se ON/OFF quando está no modo splitter.
- Regular %
- Para passar ao modo Não dividido, repita as operações acima

Regule a % de funcionamento da bomba consoante o modelo.

Modelo	% bomba	Divisor
ROX PLUS 500	500	10

para águas residuais ROX PLUS 500

10. Recomendações de instalação para enterrar o equipamento

O projeto de construção assinado pelo técnico competente e aprovado pela associação profissional correspondente determinará as obras civis a realizar para a instalação do equipamento, sendo estas recomendações um guia mínimo a respeitar.

ACO Remosa declina qualquer responsabilidade pelo mau manuseamento e instalação incorrecta do equipamento.

Não cumprimento das recomendações de instalação anula a garantia da equipamento.

Equipamento enterrado

10.1 Avisos gerais

- Não encha o equipamento com água enquanto este não estiver corretamente posicionado e ancorado no poço. O enchimento prematuro do equipamento pode provocar a sua rotura.
- O equipamento não deve assentar em superfícies descontínuas (por exemplo, vigas), uma vez que tal pode provocar a rutura do equipamento.
- O enchimento acidental de água na fossa sem que o equipamento esteja ancorado e sem que os trabalhos de enterramento tenham sido concluídos pode provocar a rutura do equipamento.

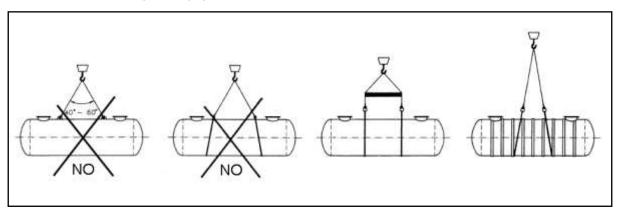
10.2 Manipulação

Aviso

- O manuseamento deve ser efectuado com o equipamento vazio.
- Durante a descarga, mantenha uma distância segura da cisterna/cisterna.

Aviso

• Antes de descarregar o equipamento, deve ser efectuada uma inspeção visual para garantir que o equipamento não foi danificado durante o transporte. Em caso de fissuras, marcas de danos ou roturas, deve comunicar imediatamente o facto aACORemosa e reflicta este facto na nota de entrega.

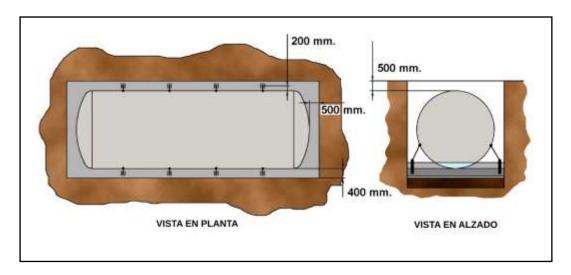

para águas residuais ROX PLUS 500

- ACO Remosa declina qualquerresponsabilidade uma vez descarregado o equipamento no destino.
- Para os equipamentos com capacidade superior a 6.000 litros, a descarga e a movimentação devem ser efectuadas por meio de estropos, cintas de material sintético, que envolvam a cisterna em todo o seu perímetro. As lingas devem ser planas e com uma largura mínima de 80mm.
- As orelhas deste equipamento não devem, em caso algum, ser utilizadas para levantar o equipamento. São orelhas para ancoragem.

As lingas para equipamentos de movimentação devem estar em conformidade com as normas UNE-EN 1492-1:2001+A1:2009, UNE-EN 1492-2:2001+A1:2009, UNE-EN 1492-4:2005+A1:2009.

Exceção: As orelhas dos depósitos enterrados verticais normalizados (de 5 m3 a 25 m3) e dos decantadores enterrados destinam-se igualmente à elevação do equipamento.

Sistema de elevação para equipamentos horizontaisACORemosa.



Fonte: UNE-EN 976-2. Depósitos enterrados em PRFV

para águas residuais ROX PLUS 500

10.3 Escavação de poços

- O comprimento e a largura da fossa devem ser tais que seja respeitada uma distância mínima de 400 m.mm. entre o equipamento e a parede das boxes.
- Se forem instalados vários equipamentos, a distância mínima entre eles deve ser de 400mm.
- A profundidade da fossa é a seguinte:
- Profundidade = Camada de argila (se necessário devido à má qualidade do solo) + Camada de betão magro (se for preparada com argila) + Laje de betão + Altura do equipamento + Distância entre o equipamento e a cota 0.
- A distância entre o equipamento (o gerador do equipamento, excluindo os bocais) e a dimensão 0 (nível do solo) deve ser, no máximo, de 500mm.
- Remova os detritos da borda da escavação antes de prosseguir com o trabalho para garantir que o material de aterro não seja contaminado.

Aviso

- Em caso de ultrapassagem ou passagem lateral de veículos ou enterramento a uma profundidade superior a 500 mm, o equipamento deve ser protegido com uma laje superior de betão apoiada numa cobertura. A espessura da laje deve ser definida pelo projeto de construção assinado pelo técnico competente e aprovado pela associação profissional correspondente.
- Em caso de lençol freático elevado, solo não estabilizado ou zona de inundação, o equipamento será instalado no interior de uma cabine de betão armado, cujas especificações serão definidas no projeto assinado pelo técnico competente e aprovado pela associação profissional correspondente.

para águas residuais ROX PLUS 500

A cisterna deve estar equipada com um tubo de mergulho e uma bomba de esgoto para retirar a água que se possa acumular na cisterna. Se a cisterna se encher de água, a cisterna romper-se-á devido à sobrecarga de flutuabilidade provocada pela água fora da cisterna.

10.4 Material de cama e de aterro

10.4.1 Para terrenos estabilizados, não propensos a inundações e/ou sem lençol freático

7ahorra

• Se as características do terreno não forem adequadas (solo mole, argiloso, etc.), deve ser colocada uma camada de cascalho de 500 mm de espessura em toda a superfície da fossa.

Betão magro

 No caso de cascalho colocado, preencha com uma camada de betão magro de 50 a 100mm. A camada deve ser plana e nivelada.

Laje de betão

- Depois de seco, construa uma laje:
- H200 mm de espessura de betão magro sem armadura, para equipamentos com um diâmetro igual ou inferior a 2 m.
- H300 mm de espessura de betão HA-25 com uma armadura de aço de 12 a 15 mm de diâmetro e uma estrutura máxima de 300x300 mm, para equipamentos de 2,5 m e 3 m de diâmetro..
- H400 mm de espessura de betão HA-25 com duas armaduras de aço (superior e inferior) de 12 a 15 mm de diâmetro e estrutura máxima de 300x300 mm, para equipamentos de 3.5 m e 4 m de diâmetro.
- A laje deve ser completamente plana e deve estar perfeitamente nivelada e sem arestas vivas
- Prepare o sistema de ancoragem, cuja altura deve ser superior à da camada de betão magro a adicionar posteriormente.

Betão magro

- Quando a laje de betão estiver endurecida, proceda ao enchimento do poço com betão magro. A espessura desta camada dependerá do diâmetro do equipamento:
- 250 mm para equipamentos com um diâmetro igual ou inferior a 2,5 m.
- 350mm. para equipamentos com um diâmetro superior a 2,5 m.

para águas residuais ROX PLUS 500

Instalação e ancoragem do tanque

 Antes de o betão ter endurecido/secado, introduza o equipamento no poço e encha-o com água até uma altura igual à espessura da camada de betão magro que acabou de ser preparada.

Aviso:

- A altura do volume de água adicionada não deve ultrapassar a altura da camada de betão magro adicionada.
- Deixe secar a camada de betão magro e fixe o equipamento de acordo com a secção 5.

Betão magro + enchimento

Encha com outra camada de betão magro até 1/3 da altura do agregado.
 Simultaneamente, encha o agregado com água até à mesma altura.

Enchimento

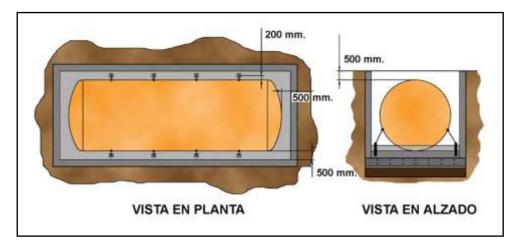
Depois de a camada ter secado/estabelecido, preencha a fossa até ao nível do solo com areia fina ou cascalho lavado, crivado e isento de pó, sem argila e matéria orgânica e completamente livre de objectos pesados e grosseiros que possam danificar o equipamento, e com uma granulometria entre 4 mm e 15 mm.mm.

Importante:

Em caso de circulação de veículos, o equipamento deve ser protegido por uma laje de betão, cuja espessura será definida pelo projeto, apoiada numa caçamba.

10.4.2 Para terrenos não estabilizados, propensos a inundações e/ou com lençóis freáticos

O reservatório deve ser protegido de forma adequada para não suportar a sobrepressão que pode ser causada pelo lençol freático, especialmente durante os períodos de chuva. Deste modo, evita-se a rutura por sobrecarga.


Além da laje de betão, será necessário construir uma caixa de betão armado HA-25, que conterá o equipamento, de acordo com um projeto assinado e aprovado pela associação profissional correspondente. O técnico do projeto deverá determinar a estrutura e a forma do reservatório a construir, tendo em conta o nível freático, o tipo de terreno, a altura máxima, etc.

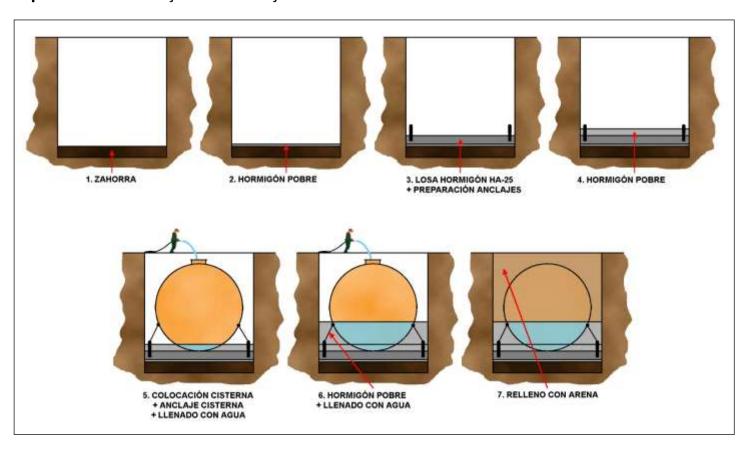
para águas residuais ROX PLUS 500

Deve ser deixada uma distância de 500 mm entre o equipamento e as paredes do compartimento.

Para o material de cama e de aterro, siga as recomendações para um solo estável.

10.5 Ancoragem

- O equipamento deve ser ancorado mecanicamente por meio de cabos de aço, utilizando todos os olhais de ancoragem disponíveis, e deve cumprir as normas actuais UNE-EN 12385-1:2003+A1:2008, UNE-EN 12385-2:2004+A1:2008, UNE-EN 12385-3:2005+A1:2008, UNE-EN 12385-4:2003+A1:2008, UNE-EN 12385-10:2004+A1:2008.
- Os pontos de fixação devem estar alinhados de cada lado do equipamento.
- A distância entre um ponto de fixação de um lado do equipamento e o ponto de fixação do lado oposto deve ser de 400 mm + diâmetro do equipamento, ou seja, 200 mm do equipamento.


10.6 Câmaras de acesso

- Nos equipamentos totalmente enterrados, deve ser colocada uma câmara de visita sobre cada uma das aberturas de acesso ao equipamento.
- As câmaras de visita não devem transmitir às paredes do equipamento qualquer tipo de carga suscetível de as danificar ou de danificar o isolamento.

para águas residuais ROX PLUS 500

Etapas das recomendações de instalação

para águas residuais ROX PLUS 500

11. Recomendações para a instalação de acessórios

11.1 Grelha de desbaste

Consulte a documentação que consta do Anexo 1.

11.2 Ventilador do reator e ventilador da membrana

AvisoNunca ponha a turbina a funcionar se a estação de tratamento não estiver cheia. Os difusores podem ser danificados de forma irreversível.

- As turbinas devem ser instaladas sobre uma base plana (betão) com uma superfície que cubra o equipamento para evitar vibrações. A palete de madeira com que a turbina é entregue nunca deve ser utilizada. Deve ser colocada a uma distância máxima de 20 metros da estação de tratamento de águas residuais.
- A localização das turbinas deve ser num local protegido do excesso de poeira e do ar frio.
 Recomenda-se que sejam colocadas no interior de um telheiro bem ventilado. É importante que a turbina esteja a pelo menos um metro de distância da parede para uma boa dissipação do calor.
- Uma vez montadas as turbinas, com os acessórios correspondentes, deve ser instalado um tubo metálico ou de silicone de pelo menos um metro para dissipar o calor antes da instalação do tubo que chegará à estação de tratamento. É importante manter o diâmetro de saída da turbina ou aumentá-lo para evitar mais perdas de carga. O tubo deve ser liso no interior.

Saídas da turbina 1"1/4: Tubo metálico de 1 m com rosca maquinada em ambos os lados do tubo1"1/4; encaixe metálico macho-fêmea de 1" ¼ (união de 3 peças) / redutor metálico de 1"1/2 para 1"1/4 / cotovelo misto de 1"1/2 (colado com rosca) em PVC 50 (nunca inferior ao diâmetro de saída da turbina).

Saídas da turbina de 2": tubo metálico de 1 m com rosca maquinada em ambos os lados do tubo de 2", encaixe metálico macho-fêmea de 2" (união de 3 peças) / cotovelo misto de 2" (colado com rosca) em PVC 63 (nunca inferior ao diâmetro da saída da turbina).

para águas residuais ROX PLUS 500

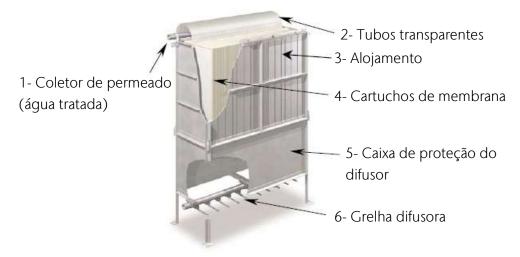
Importante: As instruções do fabricante do equipamento para instalação e manutenção devem ser seguidas.

As turbinas estão equipadas com os seguintes acessórios:

- Apré-filtro que está ligado à entrada de ar do ventilador.
- Uma válvula de segurança que deixa sair o ar se for excedida uma determinada pressão.
 Vem regulada de fábrica.
- Uma torneira para deixar sair mais ou menos ar para ajustar a agitação e o borbulhar adequados no equipamento. Inicialmente, se o nível de água no interior do purificador for elevado, deve deixar o purificador fechado.
- Um silenciador: para reduzir o ruído quando o ar é libertado com a chave.
- Um manómetro: indica, com base na sua leitura e em relação às curvas descritas na documentação da turbina, o caudal de ar que é fornecido à estação de tratamento e a conformidade com a pressão de funcionamento adequada da turbina.

A imagem seguinte mostra a instalação correcta dos acessórios da turbina:

- 1- Pré-filtro ar
- 2- Manómetro
- 3- Válvula de segurança
- 4- Silenciador
- 5- Torneira

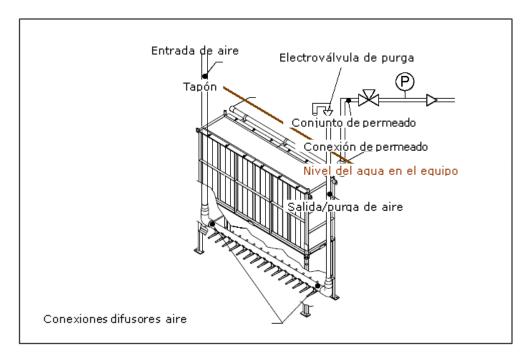


para águas residuais ROX PLUS 500

11.3 Módulo de membrana

Para a instalação, é necessário remover primeiro os suportes de cartão que mantêm as membranas no lugar, bem como a película de plástico que protege o conjunto da tubagem transparente.

Os módulos de membrana plana são constituídos por placas planas para filtração. São constituídos pelos seguintes elementos:



O ventilador de membrana é ligado a uma extremidade do tubo da grelha difusora (6). Na outra extremidade do tubo, deve ser instalada uma linha de purga com a válvula solenoide de purga (ver diagrama de tratamento). Esta electroválvula é activada tanto na abertura como no fecho.

O coletor de permeado (1) do módulo de membrana deve ser selado numa das extremidades com uma tampa de pressão (fornecida). A outra extremidade deve ser ligada ao conjunto válvula de 3 vias - transmissor de pressão - válvula de retenção do lado da válvula de 3 vias, de modo a que a água passe através do conjunto da válvula de 3 vias (para mais pormenores, consulte o esquema de tratamento e o esquema abaixo).

para águas residuais ROX PLUS 500

Importante: Deve seguir as instruções de instalação e manutenção do fabricante do equipamento, constantes do anexo 3.

11.4 Transmissor de pressão

O transmissor de pressão é instalado no ponto mais alto da linha de aspiração da bomba de extração de permeado através de um bypass.

Recomenda-se a utilização de uma válvula de fecho e de um sifão para a instalação.

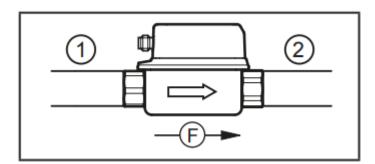
As instruções de instalação e manutenção do fabricante do equipamento, constantes do anexo 4, devem ser respeitadas.

11.5 Medidor de caudal

Para a instalação do medidor de caudal, deve ter em conta os seguintes aspectos

- Deve certificar-se de que a água tratada flui para o fluxómetro na direção da seta. Respeite a direção de instalação.
- Certifique-se de que o diâmetro interno do tubo e do sensor é o mesmo.
- Evite a acumulação de depósitos, gás e ar na tubagem. Instale o fluxómetro de modo a que o tubo esteja sempre completamente cheio de líquido.
- Instalação num tubo de elevação.
- Binário de aperto recomendado: 30 Nm

para águas residuais ROX PLUS 500


- Evite curvas na tubagem de entrada e de saída. Forneça comprimentos rectos com comprimento suficiente na entrada e na saída.
- Instale o dispositivo de modo a que o tubo não seja sujeito a forças mecânicas.

Evite as seguintes posições de montagem:

- Imediatamente antes de uma descida.
- Numa descida.
- No ponto mais alto do sistema de condutas.
- Imediatamente antes da evacuação do oleoduto.
- No lado de sucção de uma bomba.

Para a programação do medidor de caudal, deve ser programado com a seguinte gama:

- Ponto de partida analógico ASP240 l/h
- Ponto final analógico AEP:12000 l/h

(ligue a saída analógica OUT2 à placa, deixe OUT 1 livre).

As instruções de instalação e manutenção do fabricante do equipamento devem ser respeitadas, tal como constam do anexo.5.

11.6 Bomba de permeado (água tratada)

A sucção da bomba é efectuada através da flange superior e a descarga através da flange inferior (na extremidade do tubo).

Uma primeira escorva deve ser efectuada mais tarde porque a entrada de água está acima da saída.auto-ferrante mas nãoauto-ferrante.

A entrada pode ser rodada para o lado, desaparafusando os parafusos do corpo.

para águas residuais ROX PLUS 500

- A bomba de permeado deve ser instalada sobre uma base plana (ferro ou betão) com uma superfície que cubra o equipamento para evitar vibrações. Nunca utilize uma palete de madeira.
- A localização da bomba de permeado deve ser num local protegido de poeira excessiva e ar frio, num galpão bem ventilado.
- As instruções de instalação e manutenção do fabricante do equipamento, constantes do anexo 6, devem ser respeitadas.
- As ligações do conjunto de permeado são de 1"1/4 (com exceção do transmissor de pressão).

11.7 Bomba de retorno de lamas

- Existe uma bomba de recirculação/retorno das lamas situada no tanque de acumulação de lamas DAN ligado à cabeça da estação de tratamento.
- As instruções de instalação e manutenção do fabricante do equipamento devem ser respeitadas, tal como constam do anexo 7.

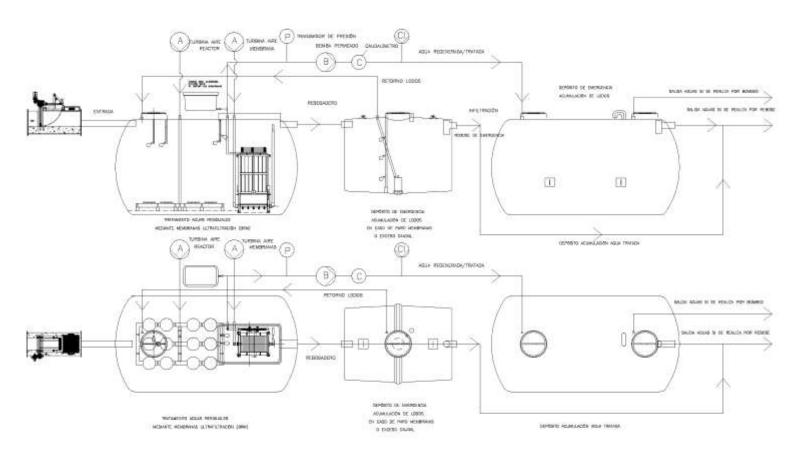
11.8 Bóias de nível ROX PLUS

- Bóias mínimas. Quando o nível da água desce para a boia de mínimo (a que se encontra abaixo da boia de máximo), a bomba de permeado deve parar de funcionar para garantir que as membranas permanecem sempre submersas.
- Também está instalado, 1 boia de segurança para a paragem do conjunto de permeado.
- Boia máxima. Quando o nível subir até esta boia, a bomba de permeado deve começar a funcionar com o caudal de projeto.

11.9 Bóias de nível DAN

- Boia de mínimo. Quando o nível desce até esta boia, a bomba de retorno deve parar de funcionar, para garantir que a bomba de retorno não fica sem água.
- Boia de nível médio. Quando o nível sobe até esta boia situada a meio do depósito, é acionado um alarme.
- Boia de máximo. Quando o nível sobe até esta boia, é acionado um alarme.

11.10 Bomba de cloração


Ligue o tubo de saída da bomba de permeado ao tubo de saída da bomba doseadora de cloro. Para o efeito, deve utilizar um bypass ou um tê com uma válvula.não retorno.

Para mais informações, consulte o Anexo 8.

para águas residuais ROX PLUS 500

Esquema

para águas residuais ROX PLUS 500

12. Manutenção

12.1 Visão geral das operações

Acessórios	Funcionamento	Periodicidade
Grelha de desbaste	Verificação e limpeza do cesto	Quinzenalmente
Sopradores filtros aspiração	Revisão e limpeza	Semestralmente
Membranas	Utilize uma solução de hipoclorito de sódio com uma concentração de 0,5%.	Semestralmente ou anualmente
ROX PLUS	Esvaziamento das lamas do equipamento para o coletor	Semestralmente ou anualmente
Instrumentação	Siga as instruções do fabricante	Periodicamente

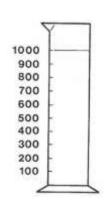
12.2 Estação de recuperação de água

Esvaziamento da água e das lamas duas vezes por ano. É necessário deixar um quinto do volume para a regeneração da cultura biológica.

Em caso de esvaziamento durante a fase de manutenção e limpeza das membranas, proceda da seguinte forma:

- 1. Para a bomba de permeado e ambos os ventiladores
- 2. Efectue a limpeza da membrana
- 3. Esvazie dois terços do equipamento.
- 4. Preparação da bomba de permeado
- 5. Quando o nível da água voltar a atingir as bóias, coloque a bomba de permeado e os dois ventiladores em automático.

Para um controlo da concentração de biomassa, é aconselhável efetuar o teste V₃₀.


12.3 Teste V₃₀

 Para verificar rapidamente a concentração e as características da biomassa contida no reator, pode ser efectuado um teste de decantação numa proveta graduada de 1 litro.

para águas residuais ROX PLUS 500

- Com a ajuda de umconcha amostrador Colher uma amostra de "licor misto", tendo o cuidado de não apanhar espuma, e encher a proveta até 1 000 ml. Após 30 minutos, observe o nível da lama decantada, o aspeto do sobrenadante e a presença de espuma ou gordura à superfície.
- (500 ml de licor misto + 500 ml de água clarificada da mesma unidade de clarificação).

12.4 Bomba de permeado

Lubrificação:

- Verifique, a cada 300 horas de funcionamento, se os rolos e o tubo estão suficientemente lubrificados.
- Caixa de velocidades: Mude o óleo a intervalos regulares, de acordo com o manual de manutenção da caixa de velocidades.

Substituição das mangueiras da bomba:

- 1. Limpe as superfícies internas da caixa da bomba
- 2. Lubrifique as superfícies internas do corpo da bomba que estão em contacto com o tubo flexível da bomba com massa de silicone original.
- 3. Verifique o estado dos rolos. Certifique-se de que as superfícies dos rolos não estão danificadas.
- 4. Encaixe o tubo flexível da bomba no corpo da bomba.
- 5. Insira os insertos em ambas as extremidades da mangueira com a ajuda da flange de aperto.
- 6. Fixe as duas partes da braçadeira de mangueira à mangueira.
- 7. Fixe as flanges de aperto à caixa da bomba.
- 8. Aperte as ligações com as braçadeiras de cabos.
- 9. Monte a tampa frontal.
- 10. Rode o rotor 180° com a ajuda do motor, de modo a que o rolo aí instalado comprima novamente a mangueira.
- 11. Retire a tampa frontal.
- 12. Substitua o segundo rolo, com os grossos, no rotor.
- 13. Lubrifique o tubo da bomba e os rolos com massa de silicone, sem óleos (que danificam a borracha).
- 14. Monte a tampa frontal.
- 15. Monte a tubagem em ambos os lados de sucção e descarga.

para águas residuais ROX PLUS 500

16. Abra todas as válvulas

Para mais informações, consulte o manual do fornecedor.

12.5 Sopradores

Recomenda-se que limpe os filtros de aspiração de 6 em 6 meses. Para mais pormenores, consulte a documentação anexa.

12.6 Limpeza de membranas

Atenção! A limpeza da membrana deve ser efectuada por pessoal qualificado.

Sugestão! Aproveite a limpeza da membrana para esvaziar as lamas do compartimento do reator.

- Durante o funcionamento, as membranas vão-se sujando progressivamente. Trabalhar com um caudal constante para garantir um determinado caudal de água limpa implica um aumento progressivo da pressão de filtração devido à incrustação.
- É necessário limpar as membranas para poder continuar a funcionar com pressões adequadas e evitar o perigo de rutura das membranas.
- Quando a luz de aviso de limpeza no painel de controlo se acende, as membranas devem ser limpas o mais rapidamente possível. Em caso de atraso, a pressão de vácuo continuará a aumentar até atingir um ponto de paragem total das membranas para a proteger.

A limpeza das membranas é efectuada da seguinte forma:

 Preparação da solução de limpeza
 Prepare uma solução de hipoclorito de sódio a 0,5% (lixívia comercial) na cuba retangular para a limpeza das membranas. Para o efeito, utilize os volumes seguintes:
 Efectue esta operação em várias etapas

Estação de regeneração	Volume de lixívia comercial	Volume de água	Volume total
ROX PLUS 500	90L	660L	750L

Nota: Efectue esta operação em várias etapas até atingir o volume total utilizando o reservatório de limpeza da membrana.

- 2. Altere a programação da bomba de permeado para o modo MANUAL STOP.
- 3. Altere a programação da Turbina de Arejamento do Módulo de Membranas para o modo MANUAL STOP.

para águas residuais ROX PLUS 500

- 4. Como o equipamento é subterrâneo e o reservatório está acima do solo, a diferença de altura é suficiente para que o produto seja doseado por gravidade. Importante: Não levante o depósito para aumentar a diferença de altura.
- 5. Abra a válvula de limpeza de modo a que a dosagem do reagente ocorra no sentido oposto ao da extração do permeado (contracorrente), para que o reagente possa chegar ao interior das membranas.
- 6. Distribua a solução de limpeza através da válvula.
- 7. Mude a posição da válvula de 3 vias de volta para a posição inicial, ou seja, para que o fluxo seja descarregado através da linha de permeado.
- 8. Mantenha os cartuchos de membrana cheios com o reagente de limpeza durante 2-3 horas.
- 9. Altere a programação da bomba de permeado e do ventilador da membrana para AUTOMÁTICO.
- 10. Defina a nova pressão inicial no quadro elétrico, se for diferente da anterior.
- 11. Durante os primeiros 15 minutos de filtração após a limpeza, rejeite o fluxo de permeado devido ao teor de cloro da solução de limpeza.
 AvisoSe o esvaziamento do equipamento e a limpeza das membranas forem efectuados ao mesmo tempo, a remoção do permeado e o arejamento das membranas e do reator só devem ser efectuados quando o equipamento estiver novamente cheio.
- 12. Altere a programação da bomba de permeado para o modo AUTOMÁTICO.
- 13. Altere a programação da Turbina de Aeração do Módulo de Membranas para o modo AUTOMÁTICO.
- 14. Mude a programação da bomba de recirculação para o modo AUTOMÁTICO.

13. Acessórios

- Grelha de desbaste Ver ANEXO 1.
- Ventilador do reator- Ver ANEXO 2.
- Módulo de elasticidade das membranas planas Ver ANEXO 3.
- Transmissor de pressão Ver ANEXO 4.
- Ventilador de membrana -- Ver ANEXO 5.
- Bomba de extração do percolado Ver ANEXO 6.
- Bomba submersívelretorno das lamas do HLD Ver ANEXO 7.
- Bomba doseadora de hipoclorito de sódio Ver ANEXO 8.
- Medidor de caudal Ver ANEXO 9.
- Válvula solenoide de purga de ar da membrana Consulte o APÊNDICE 10.
- Quadro elétrico e instalação trifásica (380V) Ver APÊNDICE 11.

